JEE MAIN + ADVANCED

MATHEMATICS

TOPIC NAME CIRCLE

(PRACTICE SHEET)

CIRCLE

LEVEL-1

Question based on Standard forms of Equation of a Circle

- Q.1 The length of the diameter of the circle $x^2 + y^2 - 4x - 6y + 4 = 0$ is -(A) 9 (B) 3 (C) 4 (D) 6
- Q.2 Which of the following is the equation of a circle? (A) $x^2 + 2y^2 - x + 6 = 0$ (B) $x^2 - y^2 + x + y + 1 = 0$ (C) $x^2 + y^2 + xy + 1 = 0$ (D) $3(x^2 + y^2) + 5x + 1 = 0$
- Q.3 The equation of the circle passing through (3, 6) and whose centre is (2, -1) is -(A) $x^2 + y^2 - 4x + 2y = 45$ (B) $x^2 + y^2 - 4x - 2y + 45 = 0$ (C) $x^2 + y^2 + 4x - 2y = 45$
 - (D) $x^2 + y^2 4x + 2y + 45 = 0$
- Q.4 If (4, 3) and (-12, -1) are end points of a diameter of a circle, then the equation of the circle is-(A) $x^2 + y^2 - 8x - 2y - 51 = 0$
 - (B) x² + y² + 8x 2y 51 = 0
 (C) x² + y² + 8x + 2y 51 = 0
 (D) None of these
- Q.5 The radius of the circle passing through the points (0, 0), (1, 0) and (0, 1) is-

```
(A) 2 (B) 1/\sqrt{2} (C) \sqrt{2} (D) 1/2
```

- Q.6 The radius of a circle with centre (a, b) and passing through the centre of the circle $x^2 + y^2 - 2gx + f^2 = 0$ is-
 - (A) $\sqrt{(a-g)^2 + b^2}$ (B) $\sqrt{a^2 + (b+g)^2}$ (C) $\sqrt{a^2 + (b-g)^2}$ (D) $\sqrt{(a+g)^2 + b^2}$

Q.7 If (x, 3) and (3, 5) are the extremities of a diameter of a circle with centre at (2, y). Then the value of x and y are-

(A) x = 1, y = 4 (B) x = 4, y = 1

(C) x = 8, y = 2 (D) None of these

- Q.8 If (0, 1) and (1, 1) are end points of a diameter of a circle, then its equation is-(A) $x^2 + y^2 - x - 2y + 1 = 0$ (B) $x^2 + y^2 + x - 2y + 1 = 0$ (C) $x^2 + y^2 - x - 2y - 1 = 0$ (D) None of these
- Q.9 The coordinates of any point on the circle $x^2 + y^2 = 4$ are-(A) (cos α , sin α) (B) (4cos α , 4 sin α)
 - (C) $(2\cos\alpha, 2\sin\alpha)$ (D) $(\sin\alpha, \cos\alpha)$
- Q.10 The parametric coordinates of any point on the circle $x^2 + y^2 - 4x - 4y = 0$ are-(A) $(-2 + 2\cos\alpha, -2 + 2\sin\alpha)$
 - (B) $(2 + 2\cos\alpha, 2 + 2\sin\alpha)$ (C) $(2 + 2\sqrt{2}\cos\alpha, 2 + 2\sqrt{2}\sin\alpha)$ (D) None of these
- Q.11 The parametric coordinates of a point on the circle $x^2 + y^2 - 2x + 2y - 2 = 0$ are -(A) $(1 - 2 \cos \alpha, 1 - 2 \sin \alpha)$

(B) $(1+2 \cos \alpha, 1+2 \sin \alpha)$ (C) $(1+2 \cos \alpha, -1+2 \sin \alpha)$ (D) $(-1+2 \cos \alpha, 1+2 \sin \alpha)$

Q.12 The equation $k (x^2 + y^2) - x - y + k = 0$ represents a real circle, if-

(A)
$$k < \sqrt{2}$$
 (B) $k > \sqrt{2}$
(C) $k > 1/\sqrt{2}$ (D) $0 < |k| \le \frac{1}{\sqrt{2}}$

- Q.13 If the equation $px^{2} + (2-q)xy + 3y^{2} - 6qx + 30 y + 6q = 0$ represents a circle, then the values of p and q are -(A) 2, 2 (B) 3, 1 (C) 3, 2 (D) 3, 4
- Q.14 The circle represented by the equation $x^2 + y^2 + 2gx + 2fy + c = 0$ will be a point circle, if-(A) $g^2 + f^2 = c$ (B) $g^2 + f^2 + c = 0$

(C) $g^2 + f^2 > c$ (D) None of these

Q.15 The equation of the circum-circle of the triangle

formed by the lines x = 0, y = 0, $\frac{x}{a} - \frac{y}{b} = 1$, is -(A) $x^2 + y^2 + ax - by = 0$ (B) $x^2 + y^2 - ax + by = 0$ (C) $x^2 + y^2 - ax - by = 0$ (D) $x^2 + y^2 + ax + by = 0$

- Q.16 The circum-circle of the quadrilateral formed by the lines x = a, x = 2a, y = -a, y = a is-(A) $x^2 + y^2 - 3ax - a^2 = 0$ (B) $x^2 + y^2 + 3ax + a^2 = 0$ (C) $x^2 + y^2 - 3ax + a^2 = 0$ (D) $x^2 + y^2 + 3ax - a^2 = 0$
- Q.17 The x coordinates of two points A and B are roots of equation $x^2 + 2x - a^2 = 0$ and y coordinate are roots of equation $y^2 + 4y - b^2 = 0$ then equation of the circle which has diameter AB is-(A) $(x - 1)^2 + (y - 2)^2 = 5 + a^2 + b^2$

(B)
$$(x + 1)^2 + (y + 2)^2 = \sqrt{(5 + a^2 + b^2)}$$

(C) $(x + 1)^2 + (y + 2)^2 = (a^2 + b^2)$
(D) $(x + 1)^2 + (y + 2)^2 = 5 + a^2 + b^2$

Question based on Equation of Circle in special cases

- Q.18 A circle touches both the axes and its centre lies in the fourth quadrant. If its radius is 1 then its equation will be -(A) $x^2 + y^2 - 2x + 2y + 1 = 0$ (B) $x^2 + y^2 + 2x - 2y - 1 = 0$ (C) $x^2 + y^2 - 2x - 2y + 1 = 0$ (D) $x^2 + y^2 + 2x - 2y + 1 = 0$
- Q.19 The equation to a circle with centre (2, 1) and touching x axis is -

- (A) $x^2 + y^2 + 4x + 2y + 4 = 0$ (B) $x^2 + y^2 - 4x - 2y + 4 = 0$ (C) $x^2 + y^2 - 4x - 2y + 1 = 0$ (D) None of these
- Q.20 The equation to the circle whose radius is 4 and which touches the x-axis at a distance -3 from the origin is-(A) $x^2 + y^2 - 6x + 8y - 9 = 0$ (B) $x^2 + y^2 \pm 6x - 8y + 9 = 0$ (C) $x^2 + y^2 + 6x \pm 8y + 9 = 0$

(D) $x^2 + y^2 \pm 6x - 8y - 9 = 0$

- Q.21 The equation of the circle touching the lines x = 0, y = 0 and x = 2c is-(A) $x^2 + y^2 + 2cx + 2cy + c^2 = 0$ (B) $x^2 + y^2 - 2cx + 2cy + c^2 = 0$ (C) $x^2 + y^2 \pm 2cx - 2cy + c^2 = 0$ (D) $x^2 + y^2 - 2cx \pm 2cy + c^2 = 0$
- Q.22 The circle $x^2 + y^2 4x 4y + 4 = 0$ is-(A) touches x-axes only (B) touches both axes (C) passes through the origin (D) touches y-axes only
- Q.23 If a be the radius of a circle which touches x-axis at the origin, then its equation is-(A) $x^2 + y^2 + ax = 0$ (B) $x^2 + y^2 \pm 2ya = 0$ (C) $x^2 + y^2 \pm 2xa = 0$ (D) $x^2 + y^2 + ya = 0$
- Q.24 The point where the line x = 0 touches the circle $x^{2+}y^{2} - 2x - 6y + 9 = 0$ is-(A) (0, 1) (B) (0, 2) (C) (0, 3) (D) No where
- Q.25 Circle $x^2 + y^2 + 6y = 0$ touches -(A) x- axis at the point (3, 0) (B) x- axis at the origin (C) y - axis at the origin (D) The line y + 3 = 0

Question based on **Position of Point w.r.t. Circle**

- Q.26 Position of the point (1, 1) with respect to the circle $x^2 + y^2 x + y 1 = 0$ is -
 - (A) Outside the circle (B) Inside the circle
 - (C) Upon the circle (D) None of these

- Q.27 The point (0.1, 3.1) with respect to the circle $x^2 + y^2 - 2x - 4y + 3 = 0$, is -(A) Inside the circle but not at the centre (B) At the centre of the circle (C) On the circle
 - (D) Outside the circle

Question based on Line & Circle

- Q.28The straight line (x 2) + (y + 3) = 0 cuts the
circle $(x 2)^2 + (y 3)^2 = 11$ at-
(A) no points
(B) two points
(C) one point
(D) None of these
- Q.29 If the line 3x + 4y = m touches the circle $x^2 + y^2 = 10x$, then m is equal to-(A) 40, 10 (B) 40, -10 (C) -40, 10 (D) -40, -10
- Q.30 Circle $x^2 + y^2 4x 8y 5 = 0$ will intersect the line 3x - 4y = m in two distinct points, if -(A) -10 < m < 5 (B) 9 < m < 20(C) -35 < m < 15 (D) None of these
- Q.31 The length of the intercept made by the circle $x^2 + y^2 = 1$ on the line x + y = 1 is-(A) $1/\sqrt{2}$ (B) $\sqrt{2}$
 - (A) $1/\sqrt{2}$ (B) $\sqrt{2}$
 - (C) 2 (D) $2\sqrt{2}$
- Q.32 If a circle with centre (0, 0) touches the line 5x + 12y = 1 then its equation will be-(A) $13(x^2 + y^2) = 1$ (B) $x^2 + y^2 = 169$ (C) $169(x^2 + y^2) = 1$ (D) $x^2 + y^2 = 13$
- Q.33 The equation of circle which touches the axes of coordinates and the line $\frac{x}{3} + \frac{y}{4} = 1$ and whose centre lies in the first quadrant is $x^2 + y^2 - 2cx - 2cy + c^2 = 0$, where c is-(A) 2 (B) 0 (C) 3 (D) 6
- Q.34 For the circle $x^2 + y^2 2x + 4y 4 = 0$, the line 2x - y + 1 = 0 is a-(A) chord (B) diameter (C) tangent line (D) None of these

- Q.35 The line y = x + c will intersect the circle $x^2 + y^2 = 1$ in two coincident points, if-
 - (A) $c = -\sqrt{2}$ (B) $c = \sqrt{2}$ (C) $c = \pm \sqrt{2}$ (D) None of these
- Q.36 Centre of a circle is (2, 3). If the line x + y = 1 touches it. Find the equation of circle-(A) $x^2 + y^2 - 4x - 6y + 5 = 0$ (B) $x^2 + y^2 - 4x - 6y - 4 = 0$ (C) $x^2 + y^2 - 4x - 6y - 5 = 0$ (D) None of these
- Q.37 The lines 12 x 5y 17 = 0 and 24 x 10 y + 44 = 0 are tangents to the same circle. Then the radius of the circle is-
 - (A) 1 (B) $1\frac{1}{2}$ (C) 2 (D) None of these
- Q.38 If the circle $x^2 + y^2 = a^2$ cuts off a chord of length 2b from the line y = mx + c, then-(A) $(1-m^2) (a^2 - b^2) = c^2$ (B) $(1+m^2) (a^2 - b^2) = c^2$ (C) $(1-m^2) (a^2 + b^2) = c^2$ (D) None of these

Question based on Equation of Tangent & Normal

- Q.39 $\ell x + my + n = 0$ is a tangent line to the circle $x^2 + y^2 = r^2$, if-(A) $\ell^2 + m^2 = n^2 r^2$ (B) $\ell^2 + m^2 = n^2 + r^2$ (C) $n^2 = r^2 (\ell^2 + m^2)$ (D) None of these
- Q.40 The equation of the tangent to the circle $x^2 + y^2 = 25$ which is inclined at 60° angle with x-axis, will be-

(A)
$$y = \sqrt{3} x \pm 10$$
 (B) $y = \sqrt{3} x \pm 2$

(C)
$$\sqrt{3} y = x \pm 10$$
 (D) None of these

Q.41 The gradient of the tangent line at the point (a cos α , a sin α) to the circle $x^2 + y^2 = a^2$, is-(A) tan ($\pi - \alpha$) (B) tan α (C) cot α (D) - cot α Q.42 If y = c is a tangent to the circle $x^2 + y^2 - 2x + 2y - 2 = 0$ at (1, 1), then the value of c is-(A) 1 (B) 2

(A) I	(B) 2
(C) –1	(D) – 2

- Q.43 Line 3x + 4y = 25 touches the circle $x^2 + y^2 = 25$ at the point-(A) (4, 3) (B) (3, 4) (C) (-3,-4) (D) None of these
- Q.44 The equations of the tangents drawn from the point (0, 1) to the circle $x^2 + y^2 2x + 4y = 0$ are-(A) 2x - y + 1 = 0, x + 2y - 2 = 0

(B) 2x - y - 1 = 0, x + 2y - 2 = 0(C) 2x - y + 1 = 0, x + 2y + 2 = 0(D) 2x - y - 1 = 0, x + 2y + 2 = 0

- Q.45 The tangent lines to the circle $x^2 + y^2 6x + 4y = 12$ which are parallel to the line 4x + 3y + 5 = 0 are given by-(A) 4x + 3y - 7 = 0, 4x + 3y + 15 = 0(B) 4x + 3y - 31 = 0, 4x + 3y + 19 = 0(C) 4x + 3y - 17 = 0, 4x + 3y + 13 = 0(D) None of these
- Q.46 The equations of tangents to the circle $x^2 + y^2 - 22x - 4y + 25 = 0$ which are perpendicular to the line 5x + 12y + 8 = 0 are-(A) 12x - 5y + 8 = 0, 12x - 5y = 252(B) 12x - 5y - 8 = 0, 12x - 5y + 252 = 0(C) 12x - 5y = 0, 12x - 5y = 252(D) None of these
- Q.47 The equation of the normal to the circle $x^{2} + y^{2} = 9$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is-(A) $x - y = \frac{\sqrt{2}}{3}$ (B) x + y = 0

(D) None of these

(C) $x - y =$	0
---------------	---

Q.48 The equation of the normal at the point (4, -1)of the circle $x^2 + y^2 - 40x + 10y = 153$ is-(A) x + 4y = 0 (B) 4x + y = 3(C) x - 4y = 0 (D) 4x - y = 0

- Q.49 The equation of the normal to the circle $x^2 + y^2 - 8x - 2y + 12 = 0$ at the points whose ordinate is -1, will be-(A) 2x - y - 7 = 0, 2x + y - 9 = 0(B) 2x + y - 7 = 0, 2x + y + 9 = 0(C) 2x + y + 7 = 0, 2x + y + 9 = 0(D) 2x - y + 7 = 0, 2x - y + 9 = 0
- **Q.50** The line ax + by + c = 0 is a normal to the circle $x^2 + y^2 = r^2$. The portion of the line ax + by + c = 0 intercepted by this circle is of length-(A) r^2 (B) r (C) 2r (D) \sqrt{r} Question Length of Tangent & Pair of Tangents
- Q.51 If the length of tangent drawn from the point (5,3) to the circle $x^2 + y^2 + 2x + ky + 17 = 0$ is 7, then k = (A) - 6 (B) - 4 (C) 4 (D) 13/2
- Q.52 The length of tangent from the point (5, 1) to the circle $x^2 + y^2 + 6x - 4y - 3 = 0$, is-(A) 29 (B) 81 (C) 7 (D) 21
- Q.53 The length of the tangent drawn from the point (2, 3) to the circle $2(x^2 + y^2) - 7x + 9y - 11 = 0$ (A) 18 (B) 14 (C) $\sqrt{14}$ (D) $\sqrt{28}$
- Q.54 If the lengths of the tangents drawn from the point (1, 2) to the circles $x^2 + y^2 + x + y 4 = 0$ and $3x^2 + 3y^2 - x - y + k = 0$ be in the ratio 4 : 3, then k = (A) 21/2 (B) 7/2 (C)-21/4 (D) 7/4
- Q.55 A pair of tangents are drawn from the origin to the circle $x^2 + y^2 + 20(x + y) + 20 = 0$. The equation of the pair of tangents is-(A) $x^2 + y^2 + 5 xy = 0$ (B) $x^2 + y^2 + 10xy = 0$ (C) $2x^2 + 2y^2 + 5xy = 0$ (D) $2x^2 + 2y^2 - 5xy = 0$
- **Q.56** If the equation of one tangent to the circle with centre at (2, -1) from the origin is 3x + y = 0, then the equation of the other tangent through the origin is-
 - (A) x + 3y = 0(C) x - 3y = 0(B) 3x - y = 0(D) x + 2y = 0

Q.57 The equation of the pair of tangents drawn to the circle $x^2 + y^2 - 2x + 4y + 3 = 0$ from (6, -5) is-(A) $7x^2 + 23y^2 + 30xy + 66x + 50y - 73 = 0$ (B) $7x^2 + 23y^2 - 30xy - 66x - 50y + 73 = 0$ (C) $7x^2 + 23y^2 + 30xy - 66x - 50y - 73 = 0$ (D) None of these

Q.58 The angle between the tangents drawn from the origin to the circle $(x-7)^2 + (y+1)^2 = 25$ is-(A) $\pi/3$ (B) $\pi/6$ (C) $\pi/2$ (D) $\pi/8$

Question based on Chord of Contact

- Q.59 The equation of the chord of contact of the circle $x^2 + y^2 + 4x + 6y 12 = 0$ with respect to the point (2, -3) is-(A) 4x = 17 (B) 4x + y = 17(C) 4y = 17 (D) None of these
- Q.60 The equation of the chord of contact, if the tangents are drawn from the point (5, -3) to the circle $x^2 + y^2 = 10$, is-(A) 5x - 3y = 10 (B) 3x + 5y = 10
 - (C) 5x + 3y = 10 (D) 3x 5y = 10

Question based on Director Circle

- Q.61 The equation of director circle to the circle $x^2 + y^2 = 8$ is-(A) $x^2 + y^2 = 8$ (B) $x^2 + y^2 = 16$ (C) $x^2 + y^2 = 4$ (D) $x^2 + y^2 = 12$
- Q.62 Two perpendicular tangents to the circle $x^2 + y^2 = a^2$ meet at P. Then the locus of P has the equation-(A) $x^2 + y^2 = 2a^2$ (B) $x^2 + y^2 = 3a^2$
 - (A) x + y = 2a (B) x + y = 3a(C) $x^2 + y^2 = 4a^2$ (D) None of these

Question Position of Two Circle

Q.63 Consider the circle $x^2 + (y - 1)^2 = 9$, (x - 1)² + y² = 25. They are such that-

- (A) each of these circles lies outside the other
- (B) one of these circles lies entirely inside the other
- (C) these circles touch each other
- (D) they intersect in two points

- Q.64 Circles $x^2 + y^2 2x 4y = 0$ and $x^2 + y^2 - 8y - 4 = 0$ (A) touch each other internally (B) cuts each other at two points (C) touch each other externally (D) None of these
- Q.65 The number of common tangents of the circle $x^2 + y^2 - 2x - 1 = 0$ and $x^2 + y^2 - 2y - 7 = 0$ is-(A) 1 (B) 3 (C) 2 (D) 4
- Q.66 If the circles $x^2 + y^2 + 2x 8y + 8 = 0$ and $x^2 + y^2 + 10x - 2y + 22 = 0$ touch each other, their point of contact is-

(A)
$$\left(-\frac{17}{5},\frac{11}{5}\right)$$
 (B) $\left(\frac{11}{3},2\right)$
(C) $\left(\frac{17}{5},\frac{11}{5}\right)$ (D) $\left(-\frac{11}{3},2\right)$

- Q.67 For the given circles $x^2 + y^2 6x 2y + 1 = 0$ and $x^2 + y^2 + 2x - 8y + 13 = 0$, which of the following is true-
 - (A) one circle lies completely outside the other
 - (B) one circle lies inside the other
 - (C) two circle intersect in two points
 - (D) they touch each other
- Q.68 If circles $x^2 + y^2 = r^2$ and $x^2 + y^2 20x + 36 = 0$ intersect at real and different points, then-(A) r < 2 and r > 18 (B) 2 < r < 18(C) r = 2 and r = 18 (D) None of these
- Q.69 The number of common tangents that can be drawn to the circles $x^2 + y^2 - 4x - 6y - 3 = 0$ and $x^2 + y^2 + 2x + 2y + 1 = 0$ is-(A) 1 (B) 2 (C) 3 (D) 4

Question based on Equation of a chord whose middle point is given

Q.70 Find the locus of mid point of chords of circle $x^2 + y^2 = 25$ which subtends right angle at origin-(A) $x^2 + y^2 = 25/4$ (B) $x^2 + y^2 = 5$ (C) $x^2 + y^2 = 25/2$ (D) $x^2 + y^2 = 5/2$

- Q.71 The equation to the chord of the circle $x^2 + y^2 = 16$ which is bisected at (2, -1) is-(A) 2x + y = 16 (B) 2x - y = 16
 - (C) x + 2y = 5 (D) 2x y = 5
- Q.72 The equation of the chord of the circle $x^{2} + y^{2} - 6x + 8y = 0$ which is bisected at the point (5, -3) is-(A) 2x - y + 7 = 0 (B) 2x + y - 7 = 0(C) 2x + y + 7 = 0 (D) 2x - y - 7 = 0

Question based on Circle through the Point of Intersection

- Q.73 The equation of the circle passing through the point (1, 1) and through the point of intersection of circles $x^2 + y^2 + 13x - 3y = 0$ and $2x^2 + 2y^2 + 4x - 7y - 25 = 0$ is-(A) $4x^2 + 4y^2 - 17x - 10y + 25 = 0$ (B) $4x^2 + 4y^2 + 30x - 13y - 25 = 0$ (C) $4x^2 + 4y^2 - 30x - 10y - 25 = 0$ (D) None of these
- Q.74 The equation of circle passing through the points of intersection of circles $x^2 + y^2 = 6$ and $x^2 + y^2 - 6x + 8 = 0$ and the point (1, 1) is-(A) $x^2 + y^2 - 4y + 2 = 0$ (B) $x^2 + y^2 - 3x + 1 = 0$ (C) $x^2 + y^2 - 6x + 4 = 0$ (D) None of these
- Q.75 The equation of the circle whose diameter is the common chord of the circles $x^2+y^2+3x+2y+1=0$ and $x^2+y^2+3x+4y+2=0$ is-(A) $x^2+y^2+3x+y+5=0$ (B) $x^2+y^2+x+3y+7=0$ (C) $x^2+y^2+2x+3y+1=0$ (D) 2 $(x^2+y^2)+6x+2y+1=0$

Question based on Common chord of two Circles

Q.76 The common chord of $x^2+y^2-4x-4y=0$ and $x^2 + y^2 = 16$ subtends at the origin an angle equal to-(A) $\pi/6$ (B) $\pi/4$

(C) π/3	(D) π/2

- Q.77 The distance from the centre of the circle $x^2 + y^2 = 2x$ to the straight line passing through the points of intersection of the two circles $x^2+y^2+5x-8y+1=0$, $x^2+y^2-3x+7y-25=0$ is-(A) 1 (B) 2 (C) 3 (D) None of these
- Q.78 The length of the common chord of the circle $x^2 + y^2 + 4x + 6y + 4 = 0$ and $x^2 + y^2 + 6x + 4y + 4 = 0$ is-
 - (A) $\sqrt{10}$ (B) $\sqrt{22}$ (C) $\sqrt{34}$ (D) $\sqrt{38}$
- Q.79 The length of the common chord of circle $x^{2} + y^{2} - 6x - 16 = 0$ and $x^{2} + y^{2} - 8y - 9 = 0$ is-(A) $10\sqrt{3}$ (B) $5\sqrt{3}$ (C) $5\sqrt{3}/2$ (D) None of these
- Q.80 Length of the common chord of the circles $x^2 + y^2 + 5x + 7y + 9 = 0$ and $x^2 + y^2 + 7x + 5y + 9 = 0$ is-(A) 8 (B) 9 (C) 7 (D) 6

Question based on Angle of intersection of two Circles

- Q.81 Two given circles $x^2 + y^2 + ax + by + c = 0$ and $x^2 + y^2 + dx + ey + f = 0$ will intersect each other orthogonally, only when-(A) ad + be = c + f(B) a + b + c = d + e + f(C) ad + be = 2c + 2f(D) 2ad + 2be = c + fQ.82 If the circles of same radius a and centres at
- (Q.82 If the circles of same radius a and centres at (2, 3) and (5, 6) cut orthogonally, then a is equal to(A) 6 (B) 4 (C) 3 (D) 10

Q.83 The angle of intersection of circles $x^2 + y^2 + 8x$ - 2y - 9 = 0 and $x^2 + y^2 - 2x + 8y - 7 = 0$ is -(A) 60° (B) 90° (C) 45° (D) 30°

- Q.84 The angle of intersection of two circles is 0° if -
 - (A) they are separate
 - (B) they intersect at two points
 - (C) they intersect only at a single point
 - (D) it is not possible
- Q.85 If a circle passes through the point (1, 2) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the equation of the locus of its centre is -

(A) $x^2 + y^2 - 2x - 6y - 7 = 0$ (B) $x^2 + y^2 - 3x - 8y + 1 = 0$ (C) 2x + 4y - 9 = 0

(D) 2x + 4y - 1 = 0

- Q.86 The equation of the circle which passes through the origin has its centre on the line x + y = 4 and cuts the circle $x^2 + y^2 - 4x + 2y + 4 = 0$ orthogonally, is -
 - (A) $x^2 + y^2 2x 6y = 0$
 - (B) $x^2 + y^2 6x 3y = 0$
 - (C) $x^2 + y^2 4x 4y = 0$
 - (D) None of these

Q.1 If θ is the angle subtended at P(x₁, y₁) by the circle S = x² + y² + 2gx + 2fy + c = 0 then -

(A)
$$\tan \theta = \frac{2\sqrt{g^2 + f^2 - c}}{\sqrt{S_1}}$$

(B) $\cot \frac{\theta}{2} = \frac{\sqrt{S_1}}{\sqrt{g^2 + f^2 - c}}$
(C) $\cot \theta = \frac{\sqrt{S_1}}{\sqrt{g^2 + f^2 - c}}$

(D) None of these

- Q.2 The circle $(x 2)^2 + (y 5)^2 = a^2$ will be inside the circle $(x - 3)^2 + (y - 6)^2 = b^2$ if -(A) $b > a + \sqrt{2}$ (B) $a < \sqrt{2} - b$ (C) $a - b < \sqrt{2}$ (D) $a + b > \sqrt{2}$
- **Q.3** If the lines $a_1 x + b_1 y + c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$ cut the coordinate axes in concyclic points, then -
 - (A) $a_1 a_2 = b_1 b_2$ (B) $a_1 b_1 = a_2 b_2$ (C) $a_1 b_2 = a_2 b_1$ (D) None of these
- Q.4 Four distinct points (2k, 3k), (1, 0), (0, 1) and (0,0) lie on a circle for -(A) All integral values of k (B) 0 < k < 1 (C) k < 0 (D) 5/13
- Q.5 The circle $x^2 + y^2 + 2gx + 2fy + c = 0$ bisects the circumference of the circle $x^2 + y^2 + 2ax + 2by + d = 0$, then -(A) 2a (g - a) + 2b (f - b) = c - d (B) 2a (g + a) + 2b (f + b) = c + d (C) 2g (g - a) + 2f (f - b) = d - c (D) 2g (g + a) + 2f (f + b) = c + d
- Q.6 Three equal circles each of radius r touch one another. The radius of the circle which touching by all the three given circles internally is -

(A)
$$(2 + \sqrt{3}) r$$
 (B) $\frac{(2 + \sqrt{3})}{\sqrt{3}} r$
(C) $\frac{(2 - \sqrt{3})}{\sqrt{3}} r$ (D) $(2 - \sqrt{3}) r$

- Q.7 The equation of the in-circle of the triangle formed by the axes and the line 4x + 3y = 6 is -(A) $x^2 + y^2 - 6x - 6y + 9 = 0$ (B) $4(x^2 + y^2 - x - y) + 1 = 0$ (C) $4(x^2 + y^2 + x + y) + 1 = 0$ (D) None of these
- Q.8 The equation of circle passing through the points of intersection of circle $x^2 + y^2 = 6$ and $x^2 + y^2 - 6x + 8 = 0$ and the point (1, 1) is -(A) $x^2 + y^2 - 3x + 1 = 0$ (B) $x^2 + y^2 - 6x + 4 = 0$ (C) $x^2 + y^2 - 4y + 2 = 0$ (D) none of these
- Q.9 If the two circles $(x 1)^2 + (y-3)^2 = r^2$ and $x^{2+}y^2 - 8x + 2y + 8 = 0$ intersect in two distinct points then -(A) 2 < r < 8 (B) r < 2(C) r = 2, r = 8 (D) r > 2
- Q.10 If from any point P on the circle $x^2 + y^2 + 2gx$ + 2fy + c = 0, tangents are drawn to the circle $x^2 + y^2 + 2gx + 2fy + c \sin^2 \alpha + (g^2 + f^2) \cos^2 \alpha = 0$, then the angle between the tangents is -

(A) α	(B) 2 α
(C) α / 2	(D) None of these

Q.11 The circles whose equations are $x^2 + y^2 + c^2 = 2ax$ and $x^2 + y^2 + c^2 - 2by = 0$ will touch one another externally if -

(A)
$$\frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a^2}$$
 (B) $\frac{1}{c^2} + \frac{1}{a^2} = \frac{1}{b^2}$
(C) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$ (D) None of these

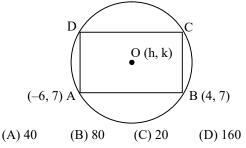
- **Q.12** The possible values of p for which the line $x \cos \alpha + y \sin \alpha = p$ is a tangent to the circle $x^2 + y^2 - 2qx \cos \alpha - 2qy \sin \alpha = 0$ is/are -(A) q and 2q (B) 0 and q (C) 0 and 2q (D) q
- - (A) $\sqrt{\beta \alpha}$ (B) $\sqrt{\alpha \beta}$
 - (C) $\sqrt{\alpha \beta}$ (D) $\sqrt{(\alpha / \beta)}$

- Q.14 The locus of centre of the circle which cuts the circle $x^2 + y^2 = k^2$ orthogonally and passes through the point (p,q) is -(A) 2 px + 2qy - (p² + q² + k²) = 0 (B) x² + y² - 3px - 4 qy - (p² + q² - k²) = 0
 - (C) 2 px + 2qy $(p^2 q^2 + k^2) = 0$ (D) x² + y² - 2px - 3qy - $(p^2 - q^2 - k^2) = 0$
- Q.15 If the line $(x + g) \cos \theta + (y + f) \sin \theta = k$ touches the circle $x^2 + y^2 + 2gx + 2fy + c = 0$, then -(A) $g^2 + f^2 = k^2 + c^2$ (B) $g^2 + f^2 = k + c$ (C) $g^2 + f^2 = k^2 + c$ (D) None of these
- Q.16 The locus of the point which moves so that the lengths of the tangents from it to two given concentric circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ are inversely as their radii has equation -(A) $x^2 + y^2 = (a + b)^2$ (B) $x^2 + y^2 = a^2 + b^2$ (C) $(a^2 + b^2) (x^2 + y^2) = 1$ (D) $x^2 + y^2 = a^2 - b^2$
- Q.17 The equation of the circle which passes through (1, 0) and (0, 1) and has its radius as small as possible, is -(A) $2x^2 + 2y^2 - 3x - 3y + 1 = 0$ (B) $x^2 + x^2 - x - x = 0$

(B)
$$x^{2} + y^{2} - x - y = 0$$

(C) $x^{2} + y^{2} - 2x - 2y + 1 = 0$
(D) $x^{2} + y^{2} - 3x - 3y + 2 = 0$

Q.18 The distance between the chords of contact of the tangents to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the origin and from the point (g, f) is -


(A)
$$g^2 + f^2$$
 (B) $\frac{1}{2}(g^2 + f^2 + c)$
(C) $\frac{1}{2}\frac{g^2 + f^2 + c}{\sqrt{g^2 + f^2}}$ (D) $\frac{1}{2}\frac{g^2 + f^2 - c}{\sqrt{g^2 + f^2}}$

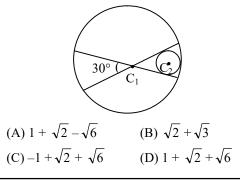
Q.19 The area of the triangle formed by the tangents from the points (h, k) to the circle $x^2 + y^2 = a^2$ and the line joining their points of contact is -

(A) a
$$\frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$$
 (B) a $\frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$
(C) $\frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$ (D) $\frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$

- Q.20 Tangents drawn from origin to the circle $x^2 + y^2 - 2ax - 2by + b^2 = 0$ are perpendicular to each other, if -(A) a - b = 1 (B) a + b = 1
 - (C) $a^2 = b^2$ (D) $a^2 + b^2 = 1$

Q.21 A rectangle ABCD is inscribed in a circle with a diameter lying along the line 3y = x + 10. If A and B are the points (-6, 7) and (4, 7) respectively. Find the area of the rectangle -

Q.22If P is a point such that the ratio of the squares of the
lengths of the tangents from P to the circles
 $x^2 + y^2 + 2x - 4y - 20 = 0$ and
 $x^2 + y^2 - 4x + 2y - 44 = 0$ is 2 : 3 then the locus of
P is a circle with centre
(A)(7, -8)
(C) (7, 8)(B) (-7, 8)
(D) (-7, -8)


Q.23 Consider four circles $(x \pm 1)^2 + (y \pm 1)^2 = 1$, then the equation of smaller circle touching these four circle is

(A)
$$x^2 + y^2 = 3 - \sqrt{2}$$
 (B) $x^2 + y^2 = 6 - 3\sqrt{2}$
(C) $x^2 + y^2 = 5 - 2\sqrt{2}$ (D) $x^2 + y^2 = 3 - 2\sqrt{2}$

Q.24 In a system of three curves C_1 , C_2 and C_3 . C_1 is a circle whose equation is $x^2 + y^2 = 4$. C_2 is the locus of the point of intersection of orthogonal tangents drawn on C_1 . C_3 is the locus of the point of intersection of perpendicular tangents drawn on C_2 . Area enclosed between the curve C_2 and C_3 is-

(A) 8π sq. units	(B) 16π sq. units
(C) 32π sq. units	(D) None of these

Q.25 Consider the figure and find radius of bigger circle. C₁ is centre of bigger circle and radius of smaller circle is unity-

- Q.26 Locus of centre of circle touching the straight lines 3x + 4y = 5 and 3x + 4y = 20 is -
 - (A) 3x + 4y = 15(B) 6x + 8y = 15(C) 3x + 4y = 25(D) 6x + 8y = 25
- Q.27 If (-3, 2) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ which is concentric with the circle

 $x^2 + y^2 + 6x + 8y - 5 = 0$, then c is -

- (C) 24 (D) None of these
- Q.28 The locus of the centre of a circle of radius 2 which rolls on the outside of the circle $x^2 + y^2 + 3x - 6y - 9 = 0$ is (A) $x^2 + y^2 + 3x - 6y + 5 = 0$ (B) $x^2 + y^2 + 3x - 6y - 31 = 0$ (C) $x^2 + y^2 + 3x - 6y + \frac{29}{4} = 0$ (D) $x^2 + y^2 + 3x - 6y - 5 = 0$
- Q.29 Equation of a circle whose centre is origin and radius is equal to the distance between the lines x = 1 and x = -1 is

(A)
$$x^2 + y^2 = 1$$

(B) $x^2 + y^2 = \sqrt{2}$
(C) $x^2 + y^2 = 4$
(D) $x^2 + y^2 = -4$

- Q.1 If the circle $x^2 + y^2 + 2x 4y k = 0$ is midway between two circles $x^2 + y^2 + 2x - 4y - 4 = 0$ and $x^2 + y^2 + 2x - 4y - 20 = 0$, then K = (A) 8 (B) 9 (C) 11 (D) 12
- Q.2 Equation of circle touching the lines |x| + |y| = 4 is -(A) $x^2 + y^2 = 12$ (B) $x^2 + y^2 = 16$ (C) $x^2 + y^2 = 4$ (D) $x^2 + y^2 = 8$
- Q.3 One possible equation of the chord of $x^2 + y^2 = 100$ that passes through (1, 7) and subtends an angle $\frac{2\pi}{3}$ at origin is -(A) 3y + 4x - 25 = 0 (B) x + y - 8 = 0 (C) 3x + 4y - 31 = 0 (D) None of these
- Q.4 A circle C_1 of unit radius lies in the first quadrant and touches both the co-ordinate axes. The radius of the circle which touches both the co-ordinate axes and cuts C_1 so that common chord is longest -

(A) 1 (B) 2 (C) 3 (D) 4

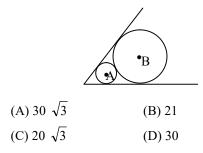
Q.5 From a point P tangent is drawn to the circle $x^2 + y^2 = a^2$ and a tangent is drawn to $x^2 + y^2 = b^2$. If these tangent are perpendicular, then locus of P is -

(A)
$$x^2 + y^2 = a^2 + b^2$$
 (B) $x^2 + y^2 = a^2 - b^2$
(C) $x^2 + y^2 = (ab)^2$ (D) $x^2 + y^2 = a + b$

Q.6 A circle is inscribed in an equilateral triangle of side 6. Find the area of any square inscribed in the circle -

(A) 36 (B) 12 (C) 6 (D) 9

Q.7 The tangent at any point to the circle $x^2 + y^2 = r^2$ meets the coordinate axes at A and B. If lines drawn parallel to the coordinate axes through A and B intersect at P, the locus of P is (A) $x^2 + y^2 = r^{-2}$ (B) $x^{-2} + y^{-2} = r^2$ (C) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{r^2}$ (D) $\frac{1}{x^2} - \frac{1}{y^2} = \frac{1}{r^2}$


- **Q.8** If $(a \cos \theta_i, a \sin \theta_i)i = 1, 2, 3$ represent the vertices of an equilateral triangle inscribed in a circle, then -
 - (A) $\cos \theta_1 + \cos \theta_2 + \cos \theta_3 = 0$
 - (B) $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 \neq 0$
 - (C) $\tan \theta_1 + \tan \theta_2 + \tan \theta_3 = 0$
 - (D) $\cot \theta_1 + \cot \theta_2 + \cot \theta_3 = 0$
- Q.9 Of the two concentric circles the smaller one has the equation $x^2 + y^2 = 4$. If each of the two intercepts on the line x + y = 2 made between the two circles is 1, the equation of the larger circle is -

(A)
$$x^2 + y^2 = 5$$
 (B) $x^2 + y^2 = 5 + 2\sqrt{2}$
(C) $x^2 + y^2 = 7 + 2\sqrt{2}$ (D) $x^2 + y^2 = 11$

- Q.10 A point on the line x = 3 from which tangent drawn to the circle $x^2 + y^2 = 8$ are at right angles -
 - (A) $(3, \sqrt{7})$ (B) $(3, \sqrt{23})$ (C) $(3, -\sqrt{23})$ (D) None of these
- Q.11 If the equation of the in-circle of an equilateral triangle is $x^2 + y^2 + 4x - 6y + 4 = 0$, then equation of circum-circle of the triangle is-(A) $x^2 + y^2 + 4x + 6y - 23 = 0$ (B) $x^2 + y^2 + 4x - 6y - 23 = 0$ (C) $x^2 + y^2 - 4x - 6y - 23 = 0$ (D) None of these

Q.12 The angle between tangents drawn from a point P to the circle $x^2 + y^2 + 4x - 2y - 4 = 0$ is 60°. Then locus of P is -(A) $x^2 + y^2 + 4x - 2y - 31 = 0$ (B) $x^2 + y^2 + 4x - 2y - 21 = 0$ (C) $x^2 + y^2 + 4x - 2y - 11 = 0$ (D) $x^2 + y^2 + 4x - 2y = 0$

Q.13 A circle with centre A and radius 7 is tangent to the sides of an angle of 60°. A larger circle with centre B is tangent to the sides of the angle and to the first circle. The radius of the larger circle is

Assertion-Reason Type Question

The following questions (Q. 14 to 23) given below consist of an "Assertion" Statement-(1) and "Reason " Statement- (2) Type questions. Use the following key to choose the appropriate answer.

- (A) Both Statement- (1) and Statement- (2) are true and Statement- (2) is the correct explanation of Statement- (1)
- (B) Both Statement- (1) and Statement- (2) are true but Statement- (2) is not the correct explanation of Statement- (1)
- (C) Statement- (1) is true but Statement- (2) is false
- (D) Statement- (1) is false but Statement- (2) is true
- Q. 14 Statement (1): Two points A(10, 0) and O(0, 0) are given and a circle $x^2 + y^2 6x + 8y 11 = 0$. The circle always cuts the line segments OA. Statement (2): The centre of the circle, point A and the point O are not collinear.
- Q.15 Statement (1): If a line L = 0 is a tangents to the circle S = 0 then it will also be a tangent to the circle $S + \lambda L = 0$.

Statement (2) : If a line touches a circles then perpendicular distance from centre of the circle on the line must be equal to the radius.

Q.16 Consider the following statements:-Statement (1): The circle $x^2 + y^2 = 1$ has exactly two tangents parallel to the x-axis

Statement (2):
$$\frac{dy}{dx} = 0$$
 on the circle exactly at

the point $(0, \pm 1)$.

- Q.17 Statement (1): The equation of chord of the circle $x^2 + y^2 6x + 10y 9 = 0$, which is bisected at (-2, 4) must be x + y 2 = 0. Statement (2) : In notations the equation of the chord of the circle S = 0 bisected at (x_1, y_1) must be $T = S_1$.
- Q.18 Statement (1): If two circles $x^2 + y^2 + 2gx + 2fy = 0$ and $x^2 + y^2 + 2g'x + 2f'y = 0$ touch each other then f'g = fg'.

Statement (2) : Two circle touch each other, if line joining their centres is perpendicular to all possible common tangents.

Q.19 Statement (1): If a circle passes through points of intersection of co-ordinate axes with the lines $\lambda x - y + 1 = 0$ and x - 2y + 3 = 0 then value of λ is 2.

Statement (2): If lines $a_1 x + b_1 y + c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$ intersects. Coordinate axes at concyclic points then $\frac{a_1}{a_1} = \frac{b_1}{a_1}$.

$$a_2 b_2$$

- Q.20 Statement (1): Equation of circle passing through two points (2, 0) and (0, 2) and having least area is $x^2 + y^2 - 2x - 2y = 0$. Statement (2): The circle of smallest radius passing through two given points A and B must be of radius $\frac{AB}{2}$.
- Q.21 Tangents are drawn from the point (2, 3) to the circle $x^2 + y^2 = 9$, then Statement (1): Tangents are mutually perpendicular. Statement (2): Locus of point of intersection of perpendicular tangents is $x^2 + y^2 = 18$.
- **Q.22** Let ' θ ' is the angle of intersection of two circles with centres C₁ and C₂ and radius r₁ and r₂ respectively then.

Statement (1): If $\cos \theta = \pm 1$ then, the circles touch each other.

Statement (2): Two circles touch each other if $|C_1C_2| = |r_1 \pm r_2|$

Q.23 Statement (1): The locus of mid point of chords of circle $x^2 + y^2 = a^2$ which are making right

angle at centre is $x^2 + y^2 = \frac{a^2}{2}$.

Statement (2): The locus of mid point of chords of circle $x^2 + y^2 - 2x = 0$ which passes through origin is $x^2 + y^2 - x = 0$.

Passage I (Question 24 to 26)

Let C_1 , C_2 are two circles each of radius 1 touching internally the sides of triangles POA₁, PA₁A₂ respectively where $P \equiv (0, 4)$ O is origin, A₁, A₂ are the points on positive x-axis.

On the basis of above passage, answer the following questions:

Q.24 Angle subtended by circle C₁ at P is-

(A)
$$\tan^{-1}\frac{2}{3}$$
 (B) $2 \tan^{-1}\frac{2}{3}$
(C) $\tan^{-1}\frac{3}{4}$ (D) $2 \tan^{-1}\frac{3}{4}$

Q.25 Centre of circle C₂ is-

(A) (3, 1)
(B)
$$(3\frac{1}{2}, 1)$$

(C) $(3\frac{3}{4}, 1)$
(D) None of these

Q.26 Length of tangent from P to circle C₂-

(A) 4	(B) $\frac{9}{2}$
(C) 5	(D) $\frac{19}{4}$

Passage II (Question 27 to 29)

Two circles $S_1 : x^2 + y^2 - 2x - 2y - 7 = 0$ and $S_2 : x^2 + y^2 - 4x - 4y - 1 = 0$ intersects each other at A and B.

On the basis of above passage, answer the following questions:

Q.27 Length of AB is-

(A) 6	(B) $\sqrt{33}$
(C) $\sqrt{34}$	(D) $\sqrt{35}$

- Q.28 Equation of circle passing through A and B whose AB is diameter-
 - (A) $x^2 + y^2 3x 3y 5 = 0$ (B) $x^2 + y^2 - 3x - 3y - 4 = 0$ (C) $x^2 + y^2 + 3x + 3y - 4 = 0$ (D) $x^2 + y^2 + 3x + 3y - 5 = 0$

Q.29 Mid point of AB is-

$(A)\left(\frac{5}{2},\frac{1}{2}\right)$	$(B)\left(\frac{3}{2},\frac{3}{2}\right)$
(C) (2, 1)	(D) (1, 2)

Passage-III (Question 30 to 31)

To the circle $x^2 + y^2 = 4$ two tangents are drawn from P(-4, 0), which touches the circle at A and B and a rhombus PA P'B is completed.

On the basis of above passage, answer the following questions :

Q. 30 Circumcentre of the triangle PAB is at
(A) (-2, 0) (B) (2, 0)
(C)
$$\left(\frac{\sqrt{3}}{2}, 0\right)$$
 (D) None of these

Q.31 Ratio of the area of triangle PAP' to that of P'AB is

(C) $\sqrt{3}:2$ (D) None of these

LEVEL-4

(Question asked in previous AIEEE and IIT-JEE)

Section -A

Q.1 The square of the length of tangent from (3, -4)on the circle $x^2 + y^2 - 4x - 6y + 3 = 0$ -

[AIEEE-2002]

(A) 20 (B) 30 (C) 40 (D) 50

- Q.2 If the two circles $(x-1)^2 + (y 3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct points, then [AIEEE-2003] (A) r > 2 (B) 2 < r < 8(C) r < 2 (D) r = 2
- Q.3 The lines 2x 3y = 5 and 3x 4y = 7 are diameters of a circle having area as 154 sq. units. Then the equation of the circle is -

[AIEEE-2003]

- (A) $x^2 + y^2 2x + 2y = 62$ (B) $x^2 + y^2 + 2x - 2y = 62$ (C) $x^2 + y^2 + 2x - 2y = 47$ (D) $x^2 + y^2 - 2x + 2y = 47$
- Q.4 If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the locus of its centre is- [AIEEE-2004] (A) $2ax + 2by + (a^2 + b^2 + 4) = 0$ (B) $2ax + 2by - (a^2 + b^2 + 4) = 0$ (C) $2ax - 2by + (a^2 + b^2 + 4) = 0$ (D) $2ax - 2by - (a^2 + b^2 + 4) = 0$
- Q.5 A variable circle passes through the fixed point A(p, q) and touches x- axis. The locus of the other end of the diameter through A is-

[AIEEE-2004]

(A) $(x - p)^2 = 4qy$	(B) $(x-q)^2 = 4py$
(C) $(y-p)^2 = 4qx$	(D) $(y-q)^2 = 4px$

Q.6 If the lines 2x + 3y + 1 = 0 and 3x - y - 4 = 0 lie along diameters of a circle of circumference 10π , then the equation of the circle is-

[AIEEE-2004]

(A) $x^2 + y^2 - 2x + 2y - 23 = 0$ (B) $x^2 + y^2 - 2x - 2y - 23 = 0$ (C) $x^2 + y^2 + 2x + 2y - 23 = 0$ (D) $x^2 + y^2 + 2x - 2y - 23 = 0$

- Q.7 If the circles $x^2 + y^2 + 2ax + cy + a = 0$ and $x^2 + y^2 - 3ax + dy - 1 = 0$ intersect in two distinct point P and Q then the line 5x + by - a = 0passes through P and Q for - [AIEEE-2005] (A) exactly one value of a (B) no value of a (C) infinitely many values of a (D) exactly two values of a
- Q.8 A circle touches the x-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the centre of the circle is-
 - [AIEEE-2005](A) an ellipse(B) a circle(C) a hyperbola(D) a parabola
- Q.9 If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = p^2$ orthogonally, then the equation of the locus of its centre is -

[AIEEE-2005] (A) $x^2 + y^2 - 3ax - 4by + (a^2 + b^2 - p^2) = 0$ (B) $2ax + 2by - (a^2 - b^2 + p^2) = 0$ (C) $x^2 + y^2 - 2ax - 3by + (a^2 - b^2 - p^2) = 0$ (D) $2ax + 2by - (a^2 + b^2 + p^2) = 0$

- Q.10 If the pair of lines $ax^2 + 2 (a + b)xy + by^2 = 0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then – [AIEEE-2005] (A) $3a^2 - 10ab + 3b^2 = 0$ (B) $3a^2 - 2ab + 3b^2 = 0$ (C) $3a^2 + 10ab + 3b^2 = 0$ (D) $3a^2 + 2ab + 3b^2 = 0$
- **Q.11** If the lines 3x 4y 7 = 0 and 2x 3y 5 = 0 are two diameters of a circle of area 49π square units, the equation of the circle is-

[AIEEE-2006]

(A) $x^2 + y^2 + 2x - 2y - 62 = 0$ (B) $x^2 + y^2 - 2x + 2y - 62 = 0$ (C) $x^2 + y^2 - 2x + 2y - 47 = 0$ (D) $x^2 + y^2 + 2x - 2y - 47 = 0$

Q.12 Let C be the circle with centre (0, 0) and radius 3 units. The equation of the locus of the mid points of the chords of the circle C that subtend an angle of $\frac{2\pi}{3}$ at its centre is - [AIEEE-2006] (A) $x^2 + y^2 = 1$ (B) $x^2 + y^2 = \frac{27}{4}$ (C) $x^2 + y^2 = \frac{9}{4}$ (D) $x^2 + y^2 = \frac{3}{2}$

CIRCLE

Q.13 Consider a family of circles which are passing through the point (-1, 1) and are tangent to x-axis. If (h, k) are the co-ordinates of the centre of the circles, then the set of values of k is given by the interval-

-)	[
(A) $0 < k < 1/2$	(B) $k \ge 1/2$
$(C) - 1/2 \le k \le 1/2$	(D) $k \le 1/2$

Q.14 The point diametrically opposite to the point P(1, 0) on the circle $x^2 + y^2 + 2x + 4y - 3 = 0$ is -

	[AIEEE-2008]
(A) (-3, 4)	(B) (-3, -4)
(C) (3, 4)	(D) $(3, -4)$

Q.15 If P and Q are the points of intersection of the circles $x^2 + y^2 + 3x + 7y + 2p - 5 = 0$ and $x^2 + y^2 + 2x + 2y - p^2 = 0$, then there is a circle passing through P, Q, and (1, 1) for-

[AIEEE- 2009]

- (A) All except one value of p
- (B) All except two values of p
- (C) Exactly one value of p
- (D) All values of p
- Q.16 The circle $x^2 + y^2 = 4x + 8y + 5$ intersects the line 3x - 4y = m at two distinct points if -

[AIEEE- 2010] (B) - 35 < m < 15

- Q.17 The two circles $x^2 + y^2 = ax$ and $x^2 + y^2 = c^2(c > 0)$ touch each other if - [AIEEE- 2011] (A) 2|a| = c (B) |a| = c(C) a = 2c (D) |a| = 2c
- Q.18 The equation of the circle passing through the point (1, 0) and (0, 1) and having the smallest radius is - [AIEEE- 2011] (A) $x^2 + y^2 - 2x - 2y + 1 = 0$ (B) $x^2 + y^2 - x - y = 0$ (C) $x^2 + y^2 + 2x + 2y - 7 = 0$ (D) $x^2 + y^2 + x + y - 2 = 0$
- Q.19 The length of the diameter of the circle which touches the x-axis at the point (1, 0) and passes through the point (2, 3) is : [AIEEE-2012]
 (A) 3/5 (B) 6/5
 (C) 5/3 (D) 10/3

Q.20 The circle passing through (1, -2) and touching the axis of x at (3,0) also passes through the point - [JEE Main - 2013] (A) (5, -2) (B) (-2, 5) (C) (-5, 2) (D) (2, -5)

Section –B

Q.1 The centre of the circle passing through points (0, 0), (1, 0) and touching the circle $x^2 + y^2 = 9$ is [IIT-1992] (A) (3/2, 1/2) (B) (1/2, 3/2) (C) (1/2, 1/2) (D) (1/2, -2^{1/2})

Q.2 The equation of the circle which touches both the axes and the straight line 4x + 3y = 6 in the first quadrant and lies below it is-[IIT-1992] (A) $4x^2 + 4y^2 - 4x - 4y + 1 = 0$ (B) $x^2 + y^2 - 6x - 6y + 9 = 0$ (C) $x^2 + y^2 - 6x - y + 9 = 0$ (D) $4(x^2 + y^2 - x - 6y) + 1 = 0$

- Q.3 The slope of the tangent at the point (h, h) of the circle $x^2 + y^2 = a^2$ is - [IIT-1993] (A) 0 (B) 1 (C) -1 (D) depends on h
- Q.4 The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle with AB as a diameter is- [IIT-96/AIEEE -04] (A) $x^2 + y^2 + x + y = 0$ (B)- $x^2 + y^2 + x - y = 0$ (C) $x^2 + y^2 - x - y = 0$ (D) None of these
- Q.5 If a circle passes thro' the points of intersection of the co - ordinate axes with the lines $\lambda x - y + 1 = 0$ and x - 2y + 3 = 0, then the value of λ is-

(A) 2 (B) 4 (C) 6 (D) 3

Q.6 The number of common tangents to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 6x - 8y = 24$ is [IIT-1998] (A) 0 (B) 1 (C) 3 (D) 4

- Q.7 Let L_1 be a straight line passing through the origin and L_2 be the straight line x + y = 1. If the intercepts made by the circle $x^2 + y^2 x + 3y = 0$ on L_1 and L_2 are equal, then which of the following equations can represent L_1
 - [IIT-1999] (A) x + y = 0 (B) x - y = 0(C) x + 7y = 0 (D) None of these

- Q.8 If the circles $x^2 + y^2 + 2x + 2ky + 6 = 0$ and $x^{2} + y^{2} + 2ky + k = 0$ intersect orthogonally, then [IIT-2000] k is -(A) 2 or -3/2(B) -2 or -3/2(C) 2 or 3/2 (D) -2 or 3/2
- The triangle PQR is inscribed in the circle Q.9 $x^2 + y^2 = 25$. If O and R have co-ordinates (3, 4) and (-4, 3) respectively, then angle QPR is equal to – **[IIT-2000]** (A) $\pi/2$ (B) $\pi/3$
 - (C) π/4 (D) $\pi/6$
- Q.10 Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals [IIT-2001]

(A)
$$\sqrt{PQ.RS}$$
 (B) $\frac{PQ+RS}{2}$
(C) $\frac{2PQ.RS}{PQ+RS}$ (D) $\sqrt{\frac{PQ^2+RS^2}{2}}$

- Q.11 If the tangent at the point P on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line 5x - 2y + 6 = 0 at a point Q on the y-axis, then the length of PQ is -[IIT-2002] (A) 4 (B) 2 (C) 5 (D) 3
- 0.12 If a > 2b > 0 then the positive value of m for which $y = mx - b\sqrt{1 + m^2}$ is a common tangent which $y = mx - b y + m + b z = b^2$ to $x^2 + y^2 = b^2$ and $(x - a)^2 + y^2 = b^2$ is -

(A)
$$\frac{2b}{\sqrt{a^2 - 4b^2}}$$
 (B) $\frac{\sqrt{a^2 - 4b^2}}{2b}$
(C) $\frac{2b}{a - 2b}$ (D) $\frac{b}{a - 2b}$

- Diameter of the given circle $x^2 + y^2 2x 6y + 6 = 0$ 0.13 is the chord of another circle C having centre (2, 1), the radius of the circle C is- **[IIT 2004]** (A) $\sqrt{3}$ (B) 2 (C) 3
 - (D) 1

- Q.14 Locus of the centre of circle touching to the x-axis & the circle $x^2 + (y - 1)^2 = 1$ externally is -[IIT-2005] (A) $\{(0, y); y \le 0\} \cup (x^2 = 4y)$
 - (B) $\{(0, y) ; y \le 0\} \cup (x^2 = y)$
 - (C) $\{(x, y) ; y \le y\} \cup (x^2 = 4y)$
 - (D) {(0, y); $y \ge 0$ } \cup (x² + (y 1)² = 4
- Q.15 Tangents are drawn from the point (17, 7) to the circle $x^2 + y^2 = 169$. [IIT 2007] STATEMENT-1: The tangents are mutually perpendicular.

Because

STATEMENT-2: The locus of the points from which mutually perpendicular tangents can be drawn to given circle is $x^2 + y^2 = 338$.

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 (B) Statement-1, is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(C) Statement-1 is True, Statement-2 is False (D) Statement-1 is False, Statement-2 is True

- Q.16 Tangents drawn from the point P(1, 8) to the circle $x^2 + y^2 - 6x - 4y - 11 = 0$ touch the circle at the points A and B. The equation of the circumcircle of the triangle PAB is - [IIT-2009] (A) $x^2 + y^2 + 4x - 6y + 19 = 0$ (B) $x^2 + y^2 - 4x - 10y + 19 = 0$ (C) $x^2 + y^2 - 2x + 6y - 29 = 0$ (D) $x^2 + y^2 - 6x - 4y + 19 = 0$
- Q.17 The centres of two circles C1 and C2 each of unit radius are at a distance of 6 units from each other. Let P be the mid point of the line segment joining the centres of C₁ and C₂ and C be a circle touching circles C_1 and C_2 externally. If a common tangent to C1 and C passing through P is also a common tangent to C₂ and C, then the radius of the circle C is-

Q.18 The circle passing through the point (-1, 0) and touching the y-axis at (0, 2) also passes through the point -[IIT 2011]

(A)
$$\left(-\frac{3}{2}, 0\right)$$
 (B) $\left(-\frac{5}{2}, 2\right)$
(C) $\left(-\frac{3}{2}, \frac{5}{2}\right)$ (D) $(-4, 0)$

CIRCLE

Q.19 The straight line 2x - 3y = 1 divides the circular region $x^2 + y^2 \le 6$ into two parts. If $S = \left\{ \left(2, \frac{3}{4}\right), \left(\frac{5}{2}, \frac{3}{4}\right), \left(\frac{1}{4}, -\frac{1}{4}\right), \left(\frac{1}{8}, \frac{1}{4}\right) \right\},$ then the number of point(s) in S lying inside the smaller part is -

(A) 8 (B) 2 (C) 4 (D) 16

- Q.20 The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line 4x - 5y = 20 to the circle $x^2 + y^2 = 9$ is [IIT 2012] (A) $20(x^2 + y^2) - 36x + 45y = 0$
 - (B) $20(x^2 + y^2) + 36x 45y = 0$
 - (C) $36(x^2 + y^2) 20x + 45y = 0$
 - (D) $36(x^2 + y^2) + 20x 45y = 0$

Paragraph for Questions 21 and 22

A tangent PT is drawn to the circle $x^2 + y^2 = 4$ at the point $P(\sqrt{3}, 1)$. A straight line L, perpendicular to PT is a tangent to the circle $(x-3)^2 + y^2 = 1$. [IIT 2012]

Q.21 A possible equation of L is

(A) $x - \sqrt{3} y = 1$ (B) $x + \sqrt{3} y = 1$ (C) $x - \sqrt{3} y = -1$ (D) $x + \sqrt{3} y = 5$

Q.22 A common tangent of the two circles is

(A)
$$x = 4$$
 (B) $y = 2$
(C) $x + \sqrt{3} y = 4$ (D) $x + 2\sqrt{2} y = 6$

Q.23 Circle(s) touching x-axis at a distance 3 from the origin and having an intercept of length $2\sqrt{7}$ on y-axis is (are) - [JEE - Advance 2013] (A) $x^2 + y^2 - 6x + 8y + 9 = 0$ (B) $x^2 + y^2 - 6x + 7y + 9 = 0$ (C) $x^2 + y^2 - 6x - 8y + 9 = 0$ (D) $x^2 + y^2 - 6x - 7y + 9 = 0$

ANSWER KEY

LEVEL- 1

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	D	D	Α	В	В	Α	А	А	С	С	С	D	С	А	В	С	D	Α	В	С
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	D	В	В	С	В	А	D	А	В	С	В	С	D	А	С	А	В	В	С	А
Qus.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	D	А	В	А	В	А	С	А	А	С	В	С	С	С	С	С	А	С	D	А
Qus.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	В	А	В	А	А	А	D	В	С	С	D	В	В	В	D	D	В	С	В	D
Qus.	81	82	83	84	85	86			-											
Ans.	С	С	В	С	С	С														

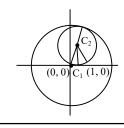
LEVEL- 2

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	В	Α	Α	D	Α	В	В	Α	Α	В	С	С	Α	Α	С	В	В	D	Α	С
Qus.	21	22	23	24	25	26	27	28	29											
Ans.	В	В	D	А	D	D	В	В	С											

LEVEL- 3

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	С	D	Α	С	А	С	С	А	В	А	В	А	В	В	В	А	D	С	С	А
Qus.	21	22	23	24	25	26	27	28	29	30	31									
Ans.	D	А	В	С	В	В	С	В	В	А	D									

LEVEL- 4


SECTION-A

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	С	В	D	В	А	Α	В	D	D	D	С	С	В	В	А	В	В	В	D	Α

SECTION-B

$$\Rightarrow C_1 C_2 = |r_1 - r_2|$$

Clearly x-coordinate $= \frac{1}{2}$ then y-coordinate
 $= \sqrt{\left(\frac{3}{2}\right)^2 - \frac{1}{4}} = \sqrt{\frac{9}{4} - \frac{1}{4}} = \sqrt{\frac{8}{4}} = \pm \sqrt{2}$

1.[D]

 $(x-h)^2 + (y-h)^2 = h^2$ 2.[A] $\Rightarrow x^2 + y^2 - 2hx - 2hy + h^2 = 0$ Also 4x + 3y = 6 touches the circle then $\left|\frac{4h+3h-6}{5}\right| = h \Longrightarrow 7h-6 = \pm 5h$ \Rightarrow h = 3 and h = $\frac{1}{2}$ Then equation $x^{2} + y^{2} - 6x - 6y + 9 = 0$ and $4x^{2} + 4y^{2} - 4x - 4y + 1 = 0$ Equation of tangent 3.[C] $hx + hy = a^2$

4.[C]

Centre of required circle is $\left(\frac{1}{2}, \frac{1}{2}\right)$

Radius =
$$\frac{1}{\sqrt{2}}$$

Hence equation is $x^2 + y^2 - x - y = 0$

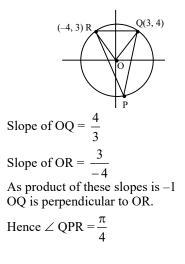
5.[A] $\lambda = 2$ (as $a_1a_2 = b_1b_2$)

Slope is -1.

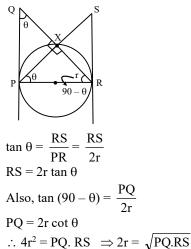
6.[B] As these two circles touch each other internally.

7.[C, B]
$$L_1: y - mx = 0$$

 $L_2: x + y = 1$
Intercept made by L_1
 $= 2 \sqrt{\frac{1}{4} + \frac{9}{4} - \frac{(m.1/2 + 3/2)^2}{(1 + m^2)}} = \sqrt{10 - \frac{(m + 3)^2}{1 + m^2}}$
Intercept made by L_2
 $= 2\sqrt{\frac{10}{4} - \left(\frac{1/2 - 3/2 - 1}{\sqrt{2}}\right)^2} = \sqrt{10 - \frac{16}{2}} = \sqrt{10 - 8} = \sqrt{2}$
As these two are equal
 $10 - \frac{(m + 3)^2}{1 + m^2} = 2$
 $\Rightarrow \frac{(m + 3)^2}{1 + m^2} = 8 \Rightarrow m^2 + 6m + 9 = 8m^2 + 8$
 $\Rightarrow 7m^2 - 6m - 1 = 0$

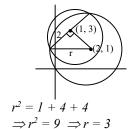

$$\Rightarrow m = \frac{6 \pm \sqrt{36 + 28}}{14} = \frac{6 \pm 8}{14} = 1, -\frac{1}{7}$$

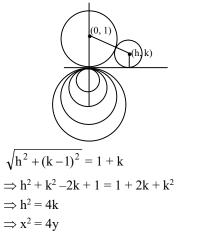
Hence equations are $y = x \& x + 7y = 0$


8.[A] (2) (1) (0) + (2) (k) (k) = 6 + k

$$\Rightarrow 2k^2 - k - 6 = 0$$

$$\Rightarrow k = \frac{1 \pm \sqrt{1 + 48}}{4} = \frac{1 \pm 7}{4} = 2, -\frac{3}{2}$$

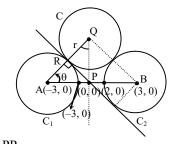

10.[A]



11.[C] Line 5x - 2y + 6 = 0 intersect y-axis at (0, 3) then length of tangent PQ = $\sqrt{9+18-2} = 5$

12.[A]
$$y = mx - b\sqrt{1 + m^2}$$

 $\Rightarrow mx - y - b\sqrt{1 + m^2} = 0$
 $b = \left| \frac{ma - b\sqrt{1 + m^2}}{\sqrt{1 + m^2}} \right|$
 $(1 + m^2)b^2 = (ma - b\sqrt{1 + m^2})^2$
 $b^2 + m^2b^2 = m^2a^2 + b^2(1 + m^2) - 2mab\sqrt{1 + m^2}$
 $\Rightarrow b^2 = m^2a^2 + b^2 - 2mab\sqrt{1 + m^2}$
 $\Rightarrow b^2 = m^2a^2 + b^2 - 2mab\sqrt{1 + m^2}$
 $\Rightarrow ma (ma - 2b\sqrt{1 + m^2}) = 0$
 $\Rightarrow m = 0 \text{ or } \frac{m^2a^2}{4b^2} = 1 + m^2$
 $\Rightarrow m^2 \left(\frac{a^2 - 4b^2}{4b^2}\right) = 1 \Rightarrow m = \pm \frac{2b}{\sqrt{a^2 - 4b^2}}$
CIRCLE 20

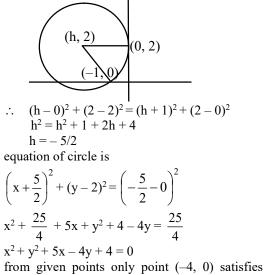


14.[A]

Required locus $\{(0, y) : y \le 0\} \cup (x^2 = 4y)$

- **15.[A]** As (17, 7) lies on the director circle $x^2 + y^2 = 338$
- **16.[B]** Equation of line AB is x + 8y - 3(x + 1) - 2(y + 8) - 11 = 0 $\Rightarrow -2x + 6y - 30 = 0$ $\Rightarrow x - 3y + 15 = 0$ Equation of circle passes through A & B is given by $(x^2 + y^2 - 6x - 4y - 11) + \lambda(x - 3y + 15)$ = 0As, (3, 2) will lie on it $-24 + 12 \lambda = 0$ $\lambda = 2$ Hence equation is $x^2 + y^2 - 4x - 10y + 19 = 0$
- 17.[A]

In \triangle APR

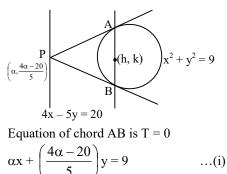

 $\cos \theta = \frac{1}{3}$

Now in Δ APQ

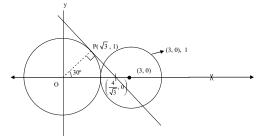
 $\sin\left(90-\theta\right) = \frac{AP}{AQ}$

$$\Rightarrow \cos \theta = \frac{3}{AQ}$$
$$\Rightarrow \frac{1}{3} = \frac{3}{AQ}$$
$$\Rightarrow AQ = 9$$
Hence r = 9 - 1 = 8

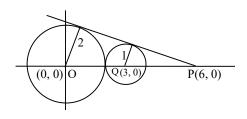
18.[D]


from given points only point (-4, 0) satisfies this equation

19.[B]


Point $(x_1 \ y_1)$ lies inside the region if $x_1^2 + y_1^2 - 6 \le 0$ and $2x_1 - 3y_1 - 1 \le 0$ $P_1\left(2, \frac{3}{4}\right)$ $4 + \frac{9}{16} - 6 \le 0$ True $4 - \frac{9}{4} - 1 > 0$ True $P_2\left(\frac{5}{2}, \frac{3}{4}\right)$ $\frac{25}{4} + \frac{9}{16} - 6 \le 0$ False $P_3\left(\frac{1}{4}, -\frac{1}{4}\right)$ $\frac{1}{16} + \frac{1}{16} - 6 \le 0$ True $\frac{2}{4} + \frac{3}{4} - 1 > 0$ True $P_4\left(\frac{1}{8}, \frac{1}{4}\right)$ $\frac{1}{64} + \frac{1}{16} - 6 \le 0$ True $\frac{2}{8} - \frac{3}{4} - 1 > 0$ False

So P_1 and P_2 lies in the interval.

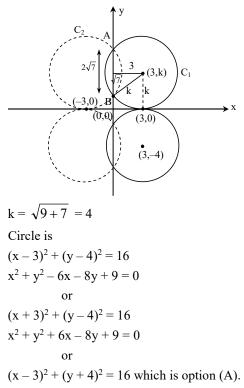

So
$$\frac{\alpha}{h} = \frac{\frac{4\alpha - 20}{5}}{k} = \frac{9}{h^2 + k^2}$$

 $\alpha = \frac{9h}{h^2 + k^2} = \frac{45k + 20(h^2 + k^2)}{4(h^2 + k^2)}$
 $36h = 45k + 20(h^2 + k^2)$
 $20(x^2 + y^2) - 36x + 45y = 0$

21.[A]

Slope of PT = tan (120°) =
$$-\sqrt{3}$$

Slope of line L = $\frac{1}{\sqrt{3}}$
Line L = $x - \sqrt{3}$ y + λ = 0
tangent to $(x - 3)^2 + y^2 = 1$
 $\frac{|3 + \lambda|}{2} = 1$
 $\lambda + 3 = 2, -2$
 $\lambda = -1, -5$
 $x - \sqrt{3}$ y - 1 = 0
or $x - \sqrt{3}$ y - 5 = 0


22.[D] Common tangent both circles

So P = (6, 0)
line through P
$$\lambda x - y - 6\lambda = 0$$

tangent to circle $\frac{|3\lambda|}{\sqrt{1 + \lambda^2}} = 1$
 $9\lambda^2 = 1 + \lambda^2 \Longrightarrow \lambda^2 = \frac{1}{8}$
 $\lambda = \frac{1}{2\sqrt{2}}$, $\frac{-1}{2\sqrt{2}}$

Equation of tangent $x + 2\sqrt{2} y = 6$

23.[A, C]

